Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 773
Filtrar
1.
Parasitol Res ; 123(1): 65, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38133827

RESUMO

The selection process for advanced therapies in patients with inflammatory bowel diseases (IBDs) must prioritize safety, especially when considering new biologic agents or oral molecule modulators. In C57BL/6 mice, oral infection with Toxoplasma gondii induces intestinal inflammation through excessive tumor necrosis factor (TNF) production, making TNF neutralization a potential therapeutic intervention. Considering this, the present study aimed to evaluate the therapeutic effects of BmooMP-α-I, a snake venom metalloprotease isolated from Bothrops moojeni, which could promote TNF hydrolysis, in treating T. gondii-induced ileitis. The results showed that C57BL/6 mice orally infected with 50 cysts of T. gondii from the Me49 strain and treated with BmooMP-α-I exhibited prolonged survival and improved morbidity scores. Additionally, the treatment ameliorated both the macroscopic and microscopic aspects of the intestine, reduced macrophage influx, and decreased the production of inflammatory mediators by mesenteric lymph node cells. These findings provide compelling experimental evidence supporting the ability of BmooMP-α-I to alleviate ileal inflammation. Considering that the currently available therapeutic protocols are not completely effective and often result in side effects, the exploration of alternative strategies involving novel therapeutic agents, as demonstrated in this study, has the potential to significantly enhance the quality of life for patients suffering from inflammatory bowel diseases.


Assuntos
Doenças Inflamatórias Intestinais , Toxoplasma , Toxoplasmose , Humanos , Animais , Camundongos , Qualidade de Vida , Camundongos Endogâmicos C57BL , Inflamação/tratamento farmacológico , Toxoplasmose/patologia , Metaloproteases , Modelos Teóricos
2.
Front Immunol ; 14: 1243480, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915581

RESUMO

Introduction: Toxoplasma gondii is the etiologic agent of toxoplasmosis, a disease that affects about one-third of the human population. Most infected individuals are asymptomatic, but severe cases can occur such as in congenital transmission, which can be aggravated in individuals infected with other pathogens, such as HIV-positive pregnant women. However, it is unknown whether infection by other pathogens, such as Trypanosoma cruzi, the etiologic agent of Chagas disease, as well as one of its proteins, P21, could aggravate T. gondii infection. Methods: In this sense, we aimed to investigate the impact of T. cruzi and recombinant P21 (rP21) on T. gondii infection in BeWo cells and human placental explants. Results: Our results showed that T. cruzi infection, as well as rP21, increases invasion and decreases intracellular proliferation of T. gondii in BeWo cells. The increase in invasion promoted by rP21 is dependent on its binding to CXCR4 and the actin cytoskeleton polymerization, while the decrease in proliferation is due to an arrest in the S/M phase in the parasite cell cycle, as well as interleukin (IL)-6 upregulation and IL-8 downmodulation. On the other hand, in human placental villi, rP21 can either increase or decrease T. gondii proliferation, whereas T. cruzi infection increases T. gondii proliferation. This increase can be explained by the induction of an anti-inflammatory environment through an increase in IL-4 and a decrease in IL-6, IL-8, macrophage migration inhibitory factor (MIF), and tumor necrosis factor (TNF)-α production. Discussion: In conclusion, in situations of coinfection, the presence of T. cruzi may favor the congenital transmission of T. gondii, highlighting the importance of neonatal screening for both diseases, as well as the importance of studies with P21 as a future therapeutic target for the treatment of Chagas disease, since it can also favor T. gondii infection.


Assuntos
Doença de Chagas , Toxoplasmose , Trypanosoma cruzi , Recém-Nascido , Humanos , Feminino , Gravidez , Placenta/patologia , Interleucina-8 , Toxoplasmose/patologia , Doença de Chagas/patologia , Proteínas Recombinantes
3.
Microb Pathog ; 181: 106206, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37331670

RESUMO

Toxoplasmosis is a zoonotic protozoal disease affecting approximately one-third of the world's population. The lack of current treatment options necessitates the development of drugs with good tolerance and effectiveness on the active and cystic stages of the parasite. The present study was established to investigate, for the first time, the potential potency of clofazimine (CFZ) against acute and chronic experimental toxoplasmosis. For this purpose, the type II T. gondii (Me49 strain) was used for induction acute (20 cysts in each mouse) and chronic (10 cysts in each mouse) experimental toxoplasmosis. The mice were treated with 20 mg/kg of CFZ intraperitoneally and orally. The histopathological changes, brain cyst count, total Antioxidant Capacity (TAC), malondialdehyde (MDA) assay, and the level of INF-γ were also evaluated. In the acute toxoplasmosis, both IP and oral administration of CFZ induced a significant reduction in brain parasite burden by 90.2 and 89%, respectively, and increased the survival rate to 100% compared with 60% in untreated controls. In the chronic infection, cyst burden decreased at 85.71 and 76.18% in CFZ-treated subgroups in comparison to infected untreated controls. In addition, 87.5% and 100% of CFZ-treated subgroups survived versus untreated control 62.5%. Moreover, CFZ significantly increased INF-γ levels in acute and chronic toxoplasmosis. Tissue inflammatory lesions were considerably reduced in the CFZ-treated chronic subgroups. CFZ treatment significantly reduced MDA levels and elevated TAC in both acute and chronic infections. In conclusion, CFZ showed a promising finding regarding the ability to reduce cyst burden in acute and chronic infection. Further studies are needed to investigate the therapeutic role of CFZ on toxoplasmosis using the long-term treatment and more advanced approaches. In addition, clofazimine may need to be accompanied by another drug to augment its effect and prevent the regrowth of parasites.


Assuntos
Toxoplasma , Toxoplasmose , Animais , Camundongos , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Infecção Persistente , Toxoplasmose/tratamento farmacológico , Toxoplasmose/patologia , Encéfalo/patologia , Zoonoses
4.
Parasitol Res ; 121(8): 2405-2414, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35710847

RESUMO

Toxoplasma gondii is a worldwide prevalent parasite. The infection has been linked to variable inflammatory effects including neuroinflammation. Biochanin A (BCA) is an isoflavone, known for its anti-inflammatory and anti-oxidative properties. In this study, we examined the effect of BCA on the brain and liver inflammatory lesions in a murine model with chronic toxoplasmosis. Mice were divided in to six groups: non-infected control, non-infected BCA-treated, and four infected groups with Toxoplasma gondii Me49-type II cystogenic strain: infected control, BCA (50 mg/kg/day)-treated, combined BCA/cotrimoxazole-treated and cotrimoxazole (370 mg/kg/day) alone-treated. Gene expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and inducible nitric oxide synthase (iNOS) was evaluated by quantitative real-time PCR in the brain and liver tissues. In the infected control group, an upregulation of TNF-α and IL-1ß mRNA expression levels was found. However, a downregulation of iNOS expression was detected in the brain of infected control mice. In both BCA- and combined-treated groups, the brain and liver tissues showed significantly reduced inflammatory lesions compared to the infected control mice with inhibited TNF-α and IL-1ß mRNA levels. The iNOS expression levels in the brain tissues of BCA group were significantly higher than the levels of the infected control group. BCA alone or combined significantly reduced T. gondii cyst count in the brain tissues. In conclusion, the anti-inflammatory activity of BCA was demonstrated in the brain tissues of mice with chronic toxoplasmosis with decreased TNF-α and IL-1ß expression levels and increased iNOS expression levels.


Assuntos
Isoflavonas , Toxoplasma , Toxoplasmose , Animais , Genisteína , Inflamação/tratamento farmacológico , Camundongos , RNA Mensageiro/metabolismo , Toxoplasma/genética , Toxoplasmose/patologia , Combinação Trimetoprima e Sulfametoxazol , Fator de Necrose Tumoral alfa/genética
5.
Exp Parasitol ; 239: 108311, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35724932

RESUMO

Acute Toxoplasma gondii infections can influence the liver as well as other organs. Many cytokines and proteins play a role in the acute response against infection. Tumor necrosis factor alpha (TNF alpha) is a cytokine that plays a key function in stimulating hepatocytes to produce acute phase proteins. In this study, we investigated TNF alpha levels associated with the levels of macroglobulin, haptoglobin, hemopexin, C-reactive protein (CRP), albumin, serum amyloid alpha protein (SAA), and clusterin, which are acute phase proteins, in serum of mice with T. gondii infection. In the experiment, a total of 24 mice were used; 6 mice constituted the control group and 18 mice were infected with the RH strain. On the 2nd, 4th, and 6th days following the infection, 6 animals were euthanized, and their serums were collected. Compared to the control group, we observed a statistically significant decrease in albumin concentration in the group with T. gondii infection on the 6th day. Also, this group displayed a statistically significant, gradual increase in clusterin levels on the 2nd and 6th days, C-reactive protein levels on the 4th day, haptoglobin levels on the 2nd and 4th days, hemopexin levels on the 2nd day, serum amyloid A levels on the 2nd, 4th, and 6th days, and TNF-α levels on the 2nd, 4th, and 6th days (p < 0.05). TNF-α was strongly positively correlated with CRP, SAA, and clusterin, moderately positively correlated with hemopexin, and strongly negatively correlated with albumin. The increase in CRP, SAA, clusterin, and hemopexin levels on the 2nd day after infection, in parallel with the increase in TNF-α levels, indicates that these proteins can be considered as major acute phase proteins in acute T. gondii infection in mice. The data obtained here may be helpful for the diagnosis of T. gondii infection and for monitoring treatments.


Assuntos
Toxoplasma , Toxoplasmose Animal , Toxoplasmose , Proteínas de Fase Aguda , Animais , Proteína C-Reativa , Clusterina , Citocinas/metabolismo , Haptoglobinas , Hemopexina , Camundongos , Toxoplasmose/patologia , Toxoplasmose Animal/patologia , Fator de Necrose Tumoral alfa
6.
Front Immunol ; 13: 822567, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572567

RESUMO

Toxoplasma gondii infects one-third of the world population. For decades, it has been considered a silent lifelong infection. However, chronically T. gondii-infected persons may present psychiatric and neurocognitive changes as anxiety, depression, and memory loss. In a model of long-term chronic infection, behavioral alterations parallel neuroinflammation and systemic high cytokine levels, and may reflect brain cyst load. Recent findings support that in chronic infection an active parasite-host interplay involves an immune-mediated control of tissue cysts. Here, we tested the idea that etiological treatment in chronic phase may add advantage to intrinsic immune-mediated cyst control and impact behavioral changes. Thus, we combined sulfadiazine-plus-pyrimethamine (S+P), the first-choice therapy for toxoplasmosis, to study the association of brain cyst load and biological processes related to the immune response (neuroinflammation, blood-brain barrier -BBB- disruption and serum cytokine levels), with behavioral and neurocognitive changes of long-term chronic infection. Female C57BL/6 mice (H-2b) were infected (5 cysts, ME-49 strain) and treated with S+P from 30 to 60 days postinfection (dpi), compared with vehicle (Veh)-treated and noninfected controls. At endpoints (pre-therapy, 30 dpi; S+P therapy, 60 dpi; after ceased therapy, 90 dpi), independent groups were subjected to behavioral tests, and brain tissues and sera were collected. Multiple behavioral and neurocognitive changes were detected in the early (30 dpi) and long-term (60 and 90 dpi) chronic infection. S+P therapy resolved locomotor alterations, anxiety, and depressive-like behavior, partially or transiently ameliorated hyperactivity and habituation memory loss. Analysis after therapy cessation showed that S+P therapy reduced the number of stimuli required for aversive memory consolidation. S+P therapy resulted in reduced brain cyst load, neuroinflammation and BBB disruption, and lowered systemic Th1-cytokine levels. Correlation analysis revealed association between IFNγ, TNF and MCP-1/CCL2 serum levels, brain cyst load and behavioral and neurocognitive alterations. Moreover, principal-component analysis (PCA-2D and 3D projections) highlighted distinction between clusters (noninfected; Veh-treated and S+P-treated infected). Thus, our data suggest that S+P therapy added gain to intrinsic brain cyst control and, direct or indirectly, ameliorated inflammation-related alterations, traits associated with behavioral and neurocognitive alterations.


Assuntos
Encéfalo , Pirimetamina , Sulfadiazina , Toxoplasmose , Animais , Encéfalo/parasitologia , Citocinas , Feminino , Inflamação/tratamento farmacológico , Transtornos da Memória/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Pirimetamina/farmacologia , Pirimetamina/uso terapêutico , Sulfadiazina/farmacologia , Sulfadiazina/uso terapêutico , Toxoplasmose/tratamento farmacológico , Toxoplasmose/patologia
7.
J Zhejiang Univ Sci B ; 23(4): 315-327, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35403386

RESUMO

Toxoplasma gondii is a worldwide parasite that can infect almost all kinds of mammals and cause fatal toxoplasmosis in immunocompromised patients. Apoptosis is one of the principal strategies of host cells to clear pathogens and maintain organismal homeostasis, but the mechanism of cell apoptosis induced by T. gondii remains obscure. To explore the apoptosis influenced by T. gondii, Vero cells infected or uninfected with the parasite were subjected to apoptosis detection and subsequent dual RNA sequencing (RNA-seq). Using high-throughput Illumina sequencing and bioinformatics analysis, we found that pro-apoptosis genes such as DNA damage-inducible transcript 3 (DDIT3), growth arrest and DNA damage-inducible α (GADD45A), caspase-3 (CASP3), and high-temperature requirement protease A2 (HtrA2) were upregulated, and anti-apoptosis genes such as poly(adenosine diphosphate (ADP)-ribose) polymerase family member 3 (PARP3), B-cell lymphoma 2 (Bcl-2), and baculoviral inhibitor of apoptosis protein (IAP) repeat containing 5 (BIRC5) were downregulated. Besides, tumor necrosis factor (TNF) receptor-associated factor 1 (TRAF1), TRAF2, TNF receptor superfamily member 10b (TNFRSF10b), disabled homolog 2 (DAB2)|-interacting protein (DAB2IP), and inositol 1,4,5-trisphosphate receptor type 3 (ITPR3) were enriched in the upstream of TNF, TNF-related apoptosis-inducing ligand (TRAIL), and endoplasmic reticulum (ER) stress pathways, and TRAIL-receptor 2 (TRAIL-R2) was regarded as an important membrane receptor influenced by T. gondii that had not been previously considered. In conclusion, the T. gondii RH strain could promote and mediate apoptosis through multiple pathways mentioned above in Vero cells. Our findings improve the understanding of the T. gondii infection process through providing new insights into the related cellular apoptosis mechanisms.


Assuntos
Toxoplasma , Toxoplasmose , Animais , Apoptose , Chlorocebus aethiops , Perfilação da Expressão Gênica , Humanos , Mamíferos/genética , Toxoplasma/genética , Toxoplasmose/genética , Toxoplasmose/parasitologia , Toxoplasmose/patologia , Células Vero , Proteínas Ativadoras de ras GTPase/genética
8.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-929061

RESUMO

Toxoplasma gondii is a worldwide parasite that can infect almost all kinds of mammals and cause fatal toxoplasmosis in immunocompromised patients. Apoptosis is one of the principal strategies of host cells to clear pathogens and maintain organismal homeostasis, but the mechanism of cell apoptosis induced by T. gondii remains obscure. To explore the apoptosis influenced by T. gondii, Vero cells infected or uninfected with the parasite were subjected to apoptosis detection and subsequent dual RNA sequencing (RNA-seq). Using high-throughput Illumina sequencing and bioinformatics analysis, we found that pro-apoptosis genes such as DNA damage-inducible transcript 3 (DDIT3), growth arrest and DNA damage-inducible α (GADD45A), caspase-3 (CASP3), and high-temperature requirement protease A2 (HtrA2) were upregulated, and anti-apoptosis genes such as poly(adenosine diphosphate (ADP)-ribose) polymerase family member 3 (PARP3), B-cell lymphoma 2 (Bcl-2), and baculoviral inhibitor of apoptosis protein (IAP) repeat containing 5 (BIRC5) were downregulated. Besides, tumor necrosis factor (TNF) receptor-associated factor 1 (TRAF1), TRAF2, TNF receptor superfamily member 10b (TNFRSF10b), disabled homolog 2 (DAB2)‍-interacting protein (DAB2IP), and inositol 1,4,5-trisphosphate receptor type 3 (ITPR3) were enriched in the upstream of TNF, TNF-related apoptosis-inducing ligand (TRAIL), and endoplasmic reticulum (ER) stress pathways, and TRAIL-receptor 2 (TRAIL-R2) was regarded as an important membrane receptor influenced by T. gondii that had not been previously considered. In conclusion, the T. gondii RH strain could promote and mediate apoptosis through multiple pathways mentioned above in Vero cells. Our findings improve the understanding of the T. gondii infection process through providing new insights into the related cellular apoptosis mechanisms.


Assuntos
Animais , Humanos , Apoptose , Chlorocebus aethiops , Perfilação da Expressão Gênica , Mamíferos/genética , Toxoplasma/genética , Toxoplasmose/patologia , Células Vero , Proteínas Ativadoras de ras GTPase/genética
9.
Immunohorizons ; 5(12): 931-943, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893511

RESUMO

Toxoplasma gondii infection has proven to be an ideal model to understand the delicate balance between protective immunity and immune-mediated pathology during infection. Lethal infection causes a collapse of T regulatory cells (Tregs) mediated by the loss of IL-2 and conversion of Tregs to IFN-γ-producing cells. Importantly, these Tregs highly express the Th1 transcription factor Tbet. To determine the role of Tbet in Tregs, we infected Tbx21f/f -Foxp3YFPCre and control Foxp3YFPCre mice with the type II strain of T. gondii, ME49. The majority of Tbx21f/f -Foxp3YFPCre mice succumbed to a nonlethal dose. Notably, parasite burden was reduced in Tbx21f/f -Foxp3YFPCre compared with Foxp3YFPCre control mice. We found that Tbx21f/f -Foxp3YFPCre mice have significantly higher serum levels of proinflammatory cytokines IFN-γ and TNF-α, suggestive of a heightened immune response. To test if CD4+ T cells were driving immunopathology, we treated Tbx21f/f -Foxp3YFPCre mice with anti-CD4-depleting Abs and partially rescued these mice. Broad-spectrum antibiotic treatment also improved survival, demonstrating a role for commensal flora in immunopathology in Tbx21f/f -Foxp3YFPCre mice. RNA sequencing analysis reinforced that Tbet regulates several key cellular pathways, including leukocyte activation, regulation of lymphocyte activation, and cell cycle progression, that help to maintain fitness in Tregs during Th1 responses. Taken together, our data show an important role for Tbet in Tregs in preventing lethal immunopathology during T. gondii infection, further highlighting the protective role of Treg plasticity in controlling immune responses to infection and the microbiota.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Proteínas com Domínio T/metabolismo , Linfócitos T Reguladores/imunologia , Toxoplasmose/imunologia , Animais , Feminino , Fatores de Transcrição Forkhead/genética , Interferon gama/metabolismo , Ativação Linfocitária , Masculino , Camundongos , Proteínas com Domínio T/genética , Toxoplasmose/metabolismo , Toxoplasmose/patologia , Fator de Necrose Tumoral alfa/metabolismo
10.
Elife ; 102021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34633285

RESUMO

Paneth cells constitutively produce antimicrobial peptides and growth factors that allow for intestinal homeostasis, host protection, and intestinal stem cell replication. Paneth cells rely heavily on the glycolytic metabolic program, which is in part controlled by the kinase complex Mechanistic target of rapamycin (mTORC1). Yet, little is known about mTOR importance in Paneth cell integrity under steady-state and inflammatory conditions. Our results demonstrate that IFN-γ, a crucial mediator of the intestinal inflammation, acts directly on murine Paneth cells to alter their mitochondrial integrity and membrane potential, resulting in an TORC1-dependent cell death mechanism distinct from canonical cell death pathways including apoptosis, necroptosis, and pyroptosis. These results were established with the purified cytokine and a physiologically relevant common Th1-inducing human parasite Toxoplasma gondii. Given the crucial role for IFN-γ, which is a cytokine frequently associated with the development of inflammatory bowel disease and compromised Paneth cell functions, the identified mechanisms underlying mTORC1-dependent Paneth cell death downstream of IFN-γ may provide promising novel approaches for treating intestinal inflammation.


Assuntos
Morte Celular , Interferon gama/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Celulas de Paneth/patologia , Animais , Feminino , Interferon gama/genética , Intestino Delgado/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Toxoplasma , Toxoplasmose/patologia
11.
Tissue Cell ; 73: 101658, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34597888

RESUMO

Crosstalk between trophoblast and monocytes is essential for gestational success, and it can be compromised in congenital toxoplasmosis. Cell death is one of the mechanisms involved in the maintenance of pregnancy, and this study aimed to evaluate the role of trophoblast in the modulation of monocyte cell death in the presence or absence of Toxoplasma gondii infection. THP-1 cells were stimulated with supernatants of BeWo cells and then infected or not with T. gondii. The supernatants were collected and analyzed for the secretion of human Fas ligand, and cells were used to determine cell death and apoptosis, cell death receptor, and intracellular proteins expression. Cell death and apoptosis index were higher in uninfected THP-1 cells stimulated with supernatants of BeWo cells; however, apoptosis index was reduced by T. gondii infection. Macrophage migration inhibitory factor (MIF) and transforming growth factor (TGF)-ß1, secreted by BeWo cells, altered the cell death and apoptosis rates in THP-1 cells. In infected THP-1 cells, the expression of Fas/CD95 and secretion of FasL was significantly higher; however, caspase 3 and phosphorylated extracellular-signal-regulated kinase (ERK1/2) were downregulated. Results suggest that soluble factors secreted by BeWo cells induce cell death and apoptosis in THP-1 cells, and Fas/CD95 can be involved in this process. On the other hand, T. gondii interferes in the mechanism of cell death and inhibits THP-1 cell apoptosis, which can be associated with active caspase 3 and phosphorylated ERK1/2. In conclusion, our results showed that human BeWo trophoblast cells and T. gondii infection modulate cell death in human THP-1 monocyte cells.


Assuntos
Espaço Intracelular/metabolismo , Monócitos/patologia , Monócitos/parasitologia , Proteínas/metabolismo , Receptores de Morte Celular/metabolismo , Toxoplasmose/patologia , Trofoblastos/parasitologia , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Meios de Cultivo Condicionados/farmacologia , Regulação para Baixo/efeitos dos fármacos , Proteína Ligante Fas/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fatores Inibidores da Migração de Macrófagos/farmacologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Fosforilação/efeitos dos fármacos , Células THP-1 , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo , Receptor fas/metabolismo
12.
Exp Mol Pathol ; 123: 104684, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34547302

RESUMO

The immunoproteasomes are specific proteasomes that clear oxidant-damaged proteins under inflammatory conditions in various diseases. Toxoplasma gondii (T. gondii) infects the central nervous system and causeencephalitis. However, the relationship between the immunoproteasomes and brain inflammation during T. gondii infection is not well characterized. In this study, we established an in vivo mouse model of T. gondii PLK strain infection via intraperitoneal injection and evaluated the expression of immunoproteasome subunits in the brains of infected mice. The results demonstrated that first, pathological changes in the brains of infected mice increase in severity over time. Second, following T. gondii infection, activated microglia and astrocytes undergo a series of functional alterations and morphological transformations, including proliferation and migration. Third, T. gondii infection induces expression of inflammatory cytokines, including IFN-γ, IL-1ß, TNF-α, and IL-6. Fourth, the immunoproteasome subunits low-molecular-weight polypeptide 2 (LMP2), LMP7, and LMP10 mRNA and protein levels are significantly upregulated in T. gondii-infected mouse brains, as shown by RT-qPCR and western blot analysis, compared with that in vehicle-treated brains, and their expression is localized in the microglia, astrocytes, and neurons of T. gondii-infected brains, as determined via immunofluorescence staining. Furthermore, the western blot mean gray value for the immunoproteasome subunits and the positive microglia and astrocyte immunohistochemical signals in the brains of T. gondii-infected mice were positively correlated, indicating that the observed relationships were highly significant. Therefore, it was concluded that the induction of the immunoproteasomes is a pathogenic mechanism underlying T. gondii infection-induced inflammation.


Assuntos
Inflamação/genética , Complexo de Endopeptidases do Proteassoma/genética , Toxoplasmose/genética , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/metabolismo , Encéfalo/microbiologia , Encéfalo/patologia , Humanos , Inflamação/microbiologia , Inflamação/patologia , Interferon gama/genética , Interleucina-1beta/genética , Interleucina-6/genética , Camundongos , Microglia/metabolismo , Microglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Toxoplasma/genética , Toxoplasma/patogenicidade , Toxoplasmose/microbiologia , Toxoplasmose/patologia , Fator de Necrose Tumoral alfa/genética
13.
Nat Commun ; 12(1): 3788, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145271

RESUMO

Active host cell invasion by the obligate intracellular apicomplexan parasites relies on the formation of a moving junction, which connects parasite and host cell plasma membranes during entry. Invading Toxoplasma gondii tachyzoites secrete their rhoptry content and insert a complex of RON proteins on the cytoplasmic side of the host cell membrane providing an anchor to which the parasite tethers. Here we show that a rhoptry-resident kinase RON13 is a key virulence factor that plays a crucial role in host cell entry. Cryo-EM, kinase assays, phosphoproteomics and cellular analyses reveal that RON13 is a secretory pathway kinase of atypical structure that phosphorylates rhoptry proteins including the components of the RON complex. Ultimately, RON13 kinase activity controls host cell invasion by anchoring the moving junction at the parasite-host cell interface.


Assuntos
Membrana Celular/parasitologia , Proteínas de Protozoários/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Toxoplasma/metabolismo , Toxoplasmose/patologia , Transporte Biológico/fisiologia , Células Cultivadas , Interações Hospedeiro-Parasita , Humanos , Via Secretória/fisiologia , Fatores de Virulência
14.
Cell Mol Life Sci ; 78(12): 5197-5212, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34023934

RESUMO

Multiple cellular processes, such as immune responses and cancer cell metastasis, crucially depend on interconvertible migration modes. However, knowledge is scarce on how infectious agents impact the processes of cell adhesion and migration at restrictive biological barriers. In extracellular matrix, dendritic cells (DCs) infected by the obligate intracellular protozoan Toxoplasma gondii undergo mesenchymal-to-amoeboid transition (MAT) for rapid integrin-independent migration. Here, in a cellular model of the blood-brain barrier, we report that parasitised DCs adhere to polarised endothelium and shift to integrin-dependent motility, accompanied by elevated transendothelial migration (TEM). Upon contact with endothelium, parasitised DCs dramatically reduced velocities and adhered under both static and shear stress conditions, thereby obliterating the infection-induced amoeboid motility displayed in collagen matrix. The motility of adherent parasitised DCs on endothelial monolayers was restored by blockade of ß1 and ß2 integrins or ICAM-1, which conversely reduced motility on collagen-coated surfaces. Moreover, parasitised DCs exhibited enhanced translocation across highly polarised primary murine brain endothelial cell monolayers. Blockade of ß1, ß2 integrins, ICAM-1 and PECAM-1 reduced TEM frequencies. Finally, gene silencing of the pan-integrin-cytoskeleton linker talin (Tln1) or of ß1 integrin (Itgb1) in primary DCs resulted in increased motility on endothelium and decreased TEM. Adding to the paradigms of leukocyte diapedesis, the findings provide novel insights in how an intracellular pathogen impacts the migratory plasticity of leukocytes in response to the cellular environment, to promote infection-related dissemination.


Assuntos
Barreira Hematoencefálica/parasitologia , Movimento Celular , Células Dendríticas/parasitologia , Endotélio Vascular/parasitologia , Integrinas/metabolismo , Toxoplasma/fisiologia , Toxoplasmose/parasitologia , Animais , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/metabolismo , Adesão Celular , Células Dendríticas/metabolismo , Endotélio Vascular/imunologia , Endotélio Vascular/metabolismo , Feminino , Interações Hospedeiro-Parasita , Integrinas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Toxoplasmose/imunologia , Toxoplasmose/metabolismo , Toxoplasmose/patologia
15.
Int J Mol Sci ; 22(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803262

RESUMO

In this study, we confirmed that the number of resident homeostatic microglia increases during chronic Toxoplasma gondii infection. Given that the progression of Alzheimer's disease (AD) worsens with the accumulation of amyloid ß (Aß) plaques, which are eliminated through microglial phagocytosis, we hypothesized that T. gondii-induced microglial proliferation would reduce AD progression. Therefore, we investigated the association between microglial proliferation and Aß plaque burden using brain tissues isolated from 5XFAD AD mice (AD group) and T. gondii-infected AD mice (AD + Toxo group). In the AD + Toxo group, amyloid plaque burden significantly decreased compared with the AD group; conversely, homeostatic microglial proliferation, and number of plaque-associated microglia significantly increased. As most plaque-associated microglia shifted to the disease-associated microglia (DAM) phenotype in both AD and AD + Toxo groups and underwent apoptosis after the lysosomal degradation of phagocytosed Aß plaques, this indicates that a sustained supply of homeostatic microglia is required for alleviating Aß plaque burden. Thus, chronic T. gondii infection can induce microglial proliferation in the brains of mice with progressed AD; a sustained supply of homeostatic microglia is a promising prospect for AD treatment.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Microglia , Toxoplasma/metabolismo , Toxoplasmose , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/parasitologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Microglia/parasitologia , Microglia/patologia , Toxoplasmose/genética , Toxoplasmose/metabolismo , Toxoplasmose/patologia
16.
Tissue Cell ; 72: 101544, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33892398

RESUMO

During pregnancy, Toxoplasma gondii can triggers serious manifestations and potentially affect the fetal development. In this scenario, differences in susceptibility of trophoblast cells to T. gondii infection might be evaluated in order to establish new therapeutic approaches capable of interfering in the control of fetal infection by T. gondii. This study aimed to evaluate the susceptibility of cytotrophoblast, syncytiotrophoblast and extravillous trophoblast cells to T. gondii infection. Our data demonstrate that HTR-8/SVneo cells (extravillous trophoblast cells) present higher susceptibility to T. gondii infection when compared to syncytiotrophoblast and cytotrophoblast cells, whereas syncytiotrophoblast was the cell type more resistant to the parasite infection. Also, cytotrophoblast and syncytiotrophoblast cells produced significantly more IL-6 than HTR-8/SVneo cells. On the other hand, HTR-8/SVneo cells showed higher ERK1/2 phosphorylation than cytotrophoblast and syncytiotrophoblast cells. ERK1/2 inhibition reduced T. gondii infection and increased IL-6 production in HTR-8/SVneo cells. Thus, it is plausible to conclude that the greater susceptibility of HTR-8/SVneo cells to infection by T. gondii is related to a higher ERK1/2 phosphorylation and lower levels of IL-6 in these cells compared to other cells, suggesting that these mediators may be important to favor the parasite infection in this type of trophoblastic population.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Gigantes/patologia , Interleucina-6/biossíntese , Toxoplasmose/patologia , Trofoblastos/patologia , Trofoblastos/parasitologia , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Suscetibilidade a Doenças , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Humanos , Fosforilação , Regulação para Cima
17.
Neurobiol Aging ; 102: 119-128, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33765425

RESUMO

About one-third of the world's population has latent toxoplasmosis, which is typically most prevalent in old age due to its lifelong persistence. Most infected people do not reveal clinically relevant symptoms, but T. gondii might trigger cognitive changes in otherwise asymptomatic individuals. As intact cognitive processes are essential for various achievements and successful aging, this review focuses on the cognitive profile associated with latent toxoplasmosis across the lifespan. It could be explained by a shift in balance between direct effects (increased dopamine synthesis) and indirect effects (neurodegeneration and chronic inflammation, which can decrease dopamine levels). Based thereon, we provide a possibly comprehensive framework of how T. gondii can differently affect cognitive performance across the lifespan (i.e., from increased catecholaminergic signaling in young age to decreased signaling in old age). We outline how future studies may inform our knowledge on the role of individual differences in response to T. gondii and how longitudinal studies can help trace the temporal dynamics in the shift of the balance between direct and indirect effects.


Assuntos
Envelhecimento/psicologia , Cognição , Longevidade/fisiologia , Toxoplasmose/psicologia , Envelhecimento/metabolismo , Doença Crônica , Dopamina/metabolismo , Humanos , Inflamação/etiologia , Masculino , Degeneração Neural/etiologia , Toxoplasmose/metabolismo , Toxoplasmose/patologia
18.
Sci Rep ; 11(1): 3137, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542439

RESUMO

Ocular toxoplasmosis is the leading cause of posterior uveitis worldwide. We conducted an observational study of 262 consecutive individuals (n = 344 eyes) with ocular toxoplasmosis who were followed over a 34-month period. Most subjects were T. gondii IgG + /IgM- (n = 242; 92.4%; 317 eyes), and 140 eyes (40.7%) had active lesions. For eyes in which retinal lesions were active at recruitment and best-corrected visual acuity (BCVA) could be measured (n = 133), 21.0% (n = 28) remained blind (BCVA below 20/400) after inflammation resolved. In these eyes, atypical ocular toxoplasmosis (OR 4.99; 95% CI 1.14-22.85; p = 0.0330), macular lesion (OR 9.95; 95% CI 2.45-47.15; p = 0.0019) and any complication (OR 10.26; 95% CI 3.82-30.67; p < 0.0001) were associated with BCVA below 20/200. For eyes with only inactive lesions at recruitment and BCVA measured (n = 178), 28.1% (n = 50) were blind. In these eyes, having at least one lesion larger than one disc-diameter (OR 6.30; 95% CI 2.28-22.46; p = 0.0013) and macular lesion (OR 5.69; 95% CI 2.53-13.54; p < 0.0001) were associated with BCVA below 20/200. Older age (OR 1.02; 95% CI 1.00-1.05; p = 0.0493) and active disease at presentation (OR 4.74; 95% CI 1.95-12.91; p = 0.0011) were associated with recurrences. Additional clinical attention should be directed towards patients with risk factors for poor visual outcome.


Assuntos
Cegueira/patologia , Toxoplasma/patogenicidade , Toxoplasmose/patologia , Uveíte Posterior/patologia , Adolescente , Adulto , Fatores Etários , Idoso , Anticorpos Antiprotozoários/sangue , Antiprotozoários/uso terapêutico , Cegueira/tratamento farmacológico , Cegueira/imunologia , Cegueira/parasitologia , Brasil , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Masculino , Pessoa de Meia-Idade , Pirimetamina/uso terapêutico , Recidiva , Retina/efeitos dos fármacos , Retina/imunologia , Retina/parasitologia , Retina/patologia , Fatores de Risco , Sulfadiazina/uso terapêutico , Toxoplasma/efeitos dos fármacos , Toxoplasma/crescimento & desenvolvimento , Toxoplasmose/tratamento farmacológico , Toxoplasmose/imunologia , Toxoplasmose/parasitologia , Resultado do Tratamento , Combinação Trimetoprima e Sulfametoxazol/uso terapêutico , Uveíte Posterior/tratamento farmacológico , Uveíte Posterior/imunologia , Uveíte Posterior/parasitologia , Visão Ocular/efeitos dos fármacos , Acuidade Visual/efeitos dos fármacos
19.
BMC Biol ; 19(1): 25, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33557824

RESUMO

BACKGROUND: Biomarker discovery remains a major challenge for predictive medicine, in particular, in the context of chronic diseases. This is true for the widespread protozoan Toxoplasma gondii which establishes long-lasting parasitism in metazoans, humans included. This microbe successively unfolds distinct genetic programs that direct the transition from high to low replicative potential inside host cells. As a slow-replicating cell, the T. gondii bradyzoite developmental stage persists enclosed in a cyst compartment within tissues including the nervous system, being held by a sustained immune equilibrium which accounts for the prolonged clinically silent phase of parasitism. Serological surveys indicate that nearly one third of the human population has been exposed to T. gondii and possibly host bradyzoites. Because any disruption of the immune balance drives the reverse transition from bradyzoite to fast replicating tachyzoite and uncontrolled growth of the latter, these people are at risk for life-threatening disease. While serological tests for discriminating recent from past infection are available, there is yet no immunogenic biomarker used in the serological test to allow ascertaining the presence of persistent bradyzoites. RESULTS: Capitalizing on genetically engineered parasites induced to produce mature bradyzoites in vitro, we have identified the BCLA/MAG2 protein being restricted to the bradyzoite and the cyst envelope. Using laboratory mice as relevant T. gondii host models, we demonstrated that BCLA/MAG2 drives the generation of antibodies that recognize bradyzoite and the enveloping cyst structure. We have designed an ELISA assay based on a bacterially produced BCLA recombinant polypeptide, which was validated using a large collection of sera from mice of different genetic backgrounds and infected with bcla+ or bcla-null cystogenic and non-cystogenic T. gondii strains. To refine the design of the ELISA assay, we applied high-resolution BCLA epitope mapping and identified a specific combination of peptides and accordingly set up a selective and sensitive ELISA assay which allowed the detection of anti-BCLA/MAG2 antibodies in the sera of human patients with various forms of toxoplasmosis. CONCLUSIONS: We brought proof of principle that anti-BCLA/MAG2 antibodies serve as specific and sensitive serological markers in the perspective of a combinatorial strategy for detection of persistent T. gondii parasitism.


Assuntos
Encéfalo/parasitologia , Toxoplasma/fisiologia , Toxoplasmose/diagnóstico , Animais , Biomarcadores/metabolismo , Doença Crônica , Camundongos , Testes Sorológicos , Toxoplasmose/parasitologia , Toxoplasmose/patologia
20.
Cell Mol Immunol ; 18(6): 1512-1527, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32024978

RESUMO

Dendritic cells (DCs) are indispensable for defense against pathogens but may also contribute to immunopathology. Activation of DCs upon the sensing of pathogens by Toll-like receptors (TLRs) is largely mediated by pattern recognition receptor/nuclear factor-κB (NF-κB) signaling and depends on the appropriate ubiquitination of the respective signaling molecules. However, the ubiquitinating and deubiquitinating enzymes involved and their interactions are only incompletely understood. Here, we reveal that the deubiquitinase OTU domain, ubiquitin aldehyde binding 1 (OTUB1) is upregulated in DCs upon murine Toxoplasma gondii infection and lipopolysaccharide challenge. Stimulation of DCs with the TLR11/12 ligand T. gondii profilin and the TLR4 ligand lipopolysaccharide induced an increase in NF-κB activation in OTUB1-competent cells, resulting in elevated interleukin-6 (IL-6), IL-12, and tumor necrosis factor (TNF) production, which was also observed upon the specific stimulation of TLR2, TLR3, TLR7, and TLR9. Mechanistically, OTUB1 promoted NF-κB activity in DCs by K48-linked deubiquitination and stabilization of the E2-conjugating enzyme UBC13, resulting in increased K63-linked ubiquitination of IRAK1 (IL-1 receptor-associated kinase 1) and TRAF6 (TNF receptor-associated factor 6). Consequently, DC-specific deletion of OTUB1 impaired the production of cytokines, in particular IL-12, by DCs over the first 2 days of T. gondii infection, resulting in the diminished production of protective interferon-γ (IFN-γ) by natural killer cells, impaired control of parasite replication, and, finally, death from chronic T. encephalitis, all of which could be prevented by low-dose IL-12 treatment in the first 3 days of infection. In contrast, impaired OTUB1-deficient DC activation and cytokine production by OTUB1-deficient DCs protected mice from lipopolysaccharide-induced immunopathology. Collectively, these findings identify OTUB1 as a potent novel regulator of DCs during infectious and inflammatory diseases.


Assuntos
Cisteína Endopeptidases/metabolismo , Células Dendríticas/imunologia , Imunidade , Inflamação/imunologia , NF-kappa B/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , Antígenos CD11/metabolismo , Células Dendríticas/parasitologia , Deleção de Genes , Interferon gama/metabolismo , Interleucina-12/farmacologia , Lipopolissacarídeos , Lisina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Poliubiquitina/metabolismo , Estabilidade Proteica , Sepse/imunologia , Sepse/patologia , Toxoplasma/fisiologia , Toxoplasmose/imunologia , Toxoplasmose/patologia , Ubiquitinação , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...